The research on stability analysis and control design for random nonlinear systems have been greatly popularized in recent ten years, but almost no literature focuses on the fractional-order case. This paper explores the stability problem for a class of random Caputo fractional-order nonlinear systems. As a prerequisite, under the globally and the locally Lipschitz conditions, it is shown that such systems have a global unique solution with the aid of the generalized Gronwall inequality and a Picard iterative technique. By resorting to Laplace transformation and Lyapunov stability theory, some feasible conditions are established such that the considered fractional-order nonlinear systems are respectively Mittag-Leffler noise-to-state stable, Mittag-Leffler globally asymptotically stable. Then, a tracking control strategy is established for a class of random Caputo fractional-order strict-feedback systems. The feasibility analysis is addressed according to the established stability criteria. Finally, a power system and a mass–spring-damper system modeled by the random fractional-order method are employed to demonstrate the efficiency of the established analysis approach. More critically, the deficiency in the existing literatures is covered up by the current work and a set of new theories and methods in studying random Caputo fractional-order nonlinear systems is built up.
Read full abstract