Background: Diphenhydramine is an anti-tussive used periodically to treat seasonal colds, contact dermatitis, and anaphylactic reactions. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of diphenhydramine in predicting its systemic exposure among healthy pediatrics (children and adolescents) by leveraging data files from adults (young and elderly). Methods: The data profiles comprising serum/plasma concentration over time and parameters related to diphenhydramine were scrutinized via exhaustive literature analysis and consolidated in the PK-Sim software version 11.1. This modeling methodology commences with developing an adult model and then translating it to the pediatrics which compares the predicted concentration–time datasets with the reported values. Results: The accuracy of model anticipations was then assessed for each pharmacokinetics (PK) variable, i.e., the area under the curve from 0 to infinity (AUC0-∞), maximal serum/plasma concentration (Cmax), and clearance of the diphenhydramine in plasma (CL) by employing the predicted/observed ratios (Rpre/obs), and average fold error (AFE), which fell within the pre-defined benchmark of 2-fold. The predicted and observed Cmax values for pediatrics were 3-fold greater in comparison to the young adults following a 25 mg dose depicting a need to monitor dosage schedules among children closely. Conclusions: These model-based anticipations confirmed the authenticity of the developed pediatric model and enhanced the comprehension of developmental variations on PK of diphenhydramine. This may assist healthcare professionals in ensuring the significance of lifespan applicability in personalized dose regimens, promoting therapeutic efficacy and minimizing side effects in chronic conditions among children.
Read full abstract