Electricity price forecasting has been a topic of significant interest since the deregulation of electricity markets worldwide. The New Zealand electricity market is run primarily on renewable fuels, and so weather metrics have a significant impact on electricity price and volatility. In this paper, we employ a mixed-frequency vector autoregression (MF-VAR) framework where we propose a VAR specification to the reverse unrestricted mixed-data sampling (RU-MIDAS) model, called RU-MIDAS-VAR, to provide point forecasts of half-hourly electricity prices using several weather variables and electricity demand. A key focus of this study is the use of variational Bayes as an estimation technique and its comparison with other well-known Bayesian estimation methods. We separate forecasts for peak and off-peak periods in a day since we are primarily concerned with forecasts for peak periods. Our forecasts, which include peak and off-peak data, show that weather variables and demand as regressors can replicate some key characteristics of electricity prices. We also find the MF-VAR and RU-MIDAS-VAR models achieve similar forecast results. Using the LASSO, adaptive LASSO, and random subspace regression as dimension-reduction and variable selection methods helps to improve forecasts where random subspace methods perform well for large parameter sets while the LASSO significantly improves our forecasting results in all scenarios.
Read full abstract