This study entailed an experimental evaluation of the life performance of 40-year-old reinforced concrete (RC) beams with different concrete cover depths and tensile bar diameters. Beams that were naturally corroded in a marine environment were used in this study, and no artificial process was employed to accelerate the corrosion. Most existing evaluations of beams employ electrical acceleration, admixture, or exposure to designed chloride environments to aid corrosion. Given the paucity of studies on naturally corroded beams, this study is of significance regarding the design, service, and life assessment of RC structures. Two-point load bending test was employed to examine the residual mechanical performance. The corroded bars were extracted to assess the corrosion properties, while the mechanical properties were evaluated via a tensile test. The focus of this study was on evaluating the progress of deterioration and capacity loss in naturally aged beams. The results indicated that a concrete cover of 50 mm satisfies the requirements of a design service life of 50 years. Furthermore, the cross-sectional loss–ultimate capacity loss relationship is consistently linear for the RC beams. Thus, the estimation of ultimate capacity loss based on cross-sectional loss is acceptable in case of natural corrosion of the RC beams. Hence, the findings can contribute to the prediction of the life performance and maintenance of existing structures as well as to designing new structures.
Read full abstract