The radioactive concentration in the primary loop and the radioactive release for both normal operations and accidents for the HTR-10 are calculated and presented in the paper. The coated-particle fuel is used in the HTR-10, which has good performance of retaining fission products. Therefore the radioactive concentration in the primary loop of the HTR-10 is very low, and the amount of radioactive release to the environment is also very small for both normal operation and accident conditions. The radiation doses to the public caused by radioactive release for both normal operations and accidents are given in the paper. The results show that the maximum individual effective dose to the public due to the release of airborne radioactivity during normal operations is only 1.4×10 −4 mSv a −1, which is much lower than the dose limit (1 mSv a −1) stipulated by Chinese National Standard GB8703-86. For depressurization accident and water ingress accident, the maximum individual whole-body doses to man are only 7.7×10 −2 and 2.0×10 −1 mSv, thyroid doses only 1.7×10 −1 and 1.1 mSv, respectively. They are much lower than the prescribed minimum of emergency intervention level (whole-body dose: 5 mSv, thyroid dose: 50 mSv) for sheltering measures stipulated by the Chinese Nuclear Safety Criterion HAD002/03. The conclusion is that the environmental impact is very small for normal operations and accidents for the HTR-10, and the requirements stipulated in the Chinese Nuclear Safety Criterions are satisfied perfectly.
Read full abstract