The objective of this study was to establish neural interactions between transspinal evoked potentials (TEPs) and muscle spindle group Ia afferents in healthy humans. Soleus H-reflexes were assessed following transspinal stimulation at conditioning-test (C-T) intervals that ranged from negative to positive 100 ms. TEPs were recorded from the right and left ankle/knee flexor and extensor muscles, and their amplitude was assessed following stimulation of soleus muscle spindle group Ia afferents at similar C-T intervals. Transspinal conditioning stimulation produced a short-latency, long-lasting soleus H-reflex depression. Excitation of muscle spindle group Ia afferents produced depression of ipsilateral ankle TEPs and medium-latency facilitation of the ipsilateral knee TEPs. At specific C-T intervals, the soleus H-reflex and ipsilateral ankle TEPs were summated based on their relative onset and duration. No changes were observed in the contralateral TEPs. These effects were exerted at both peripheral and spinal levels. Both transspinal and muscle spindle group Ia afferent stimulation produce long-lasting depression of the soleus H-reflex and TEPs, respectively. Transspinal stimulation may promote targeted neuromodulation and can be utilized in upper motoneuron lesions to normalize spinal reflex hyper-excitability and alter excitation thresholds of peripheral nerve axons.