BackgroundKetamine (KET) is administered to manage major depression in adolescent patients. However, the long-term effects of juvenile KET exposure on memory-related tasks have not been thoroughly assessed. We examined whether exposure to KET, psychological stress, or both results in long-lasting alterations in spatial memory in C57BL/6 mice. Furthermore, we evaluated how KET and/or psychological stress history influenced hippocampal protein kinase B–mechanistic target of rapamycin (AKT-mTOR)–related signaling. MethodsOn postnatal day 35, male and female mice underwent vicarious defeat stress (VDS), a form of psychological stress that reduces sociability in both sexes, with or without KET exposure (20 mg/kg/day, postnatal days 35–44). In adulthood (postnatal day 70), mice were assessed for spatial memory performance on a water maze task or euthanized for hippocampal tissue collection. ResultsJuvenile pre-exposure to KET or VDS individually increased the latency (seconds) to locate the escape platform in adult male, but not female, mice. However, juvenile history of concomitant KET and VDS prevented memory impairment. Furthermore, individual KET or VDS pre-exposure, unlike their combined history, decreased hippocampal AKT-mTOR signaling in adult male mice. Conversely, KET pre-exposure alone increased AKT-mTOR in the hippocampus of adult female mice. Lastly, rapamycin-induced decreases of mTOR in naïve adult female mice induced spatial memory retrieval deficits, mimicking adult male mice with a history of exposure to VDS or KET. ConclusionsOur preclinical model shows how KET treatment for the management of adolescent psychological stress–induced sequelae does not impair spatial memory later in life. However, juvenile recreational KET misuse, like psychological stress history, results in long-term spatial memory deficits and hippocampal AKT-mTOR signaling changes in a sex-specific manner.