The purpose of this study was to evaluate the effect of build direction on the mechanical properties of AISI 316L stainless steel using the Laser Directed Energy Deposition (L-DED) process, in the as-built and heat-treated conditions. The test specimens were manufactured in vertical and horizontal directions for tensile and impact tests. In addition, analysis test specimens cube-shaped were manufactured for microstructural and microhardness evaluation. The microstructure in the as-built condition showed a combination of cellular, equiaxial dendritic, cellular dendritic and columnar dendritic, while the microstructure in the heat-treated condition showed a homogeneous characteristic, composed by differently sized grains. The microhardness evaluation in the heat-treated condition presented a reduction of 26.52% compared to the as-build condition. The ultimate tensile strength of horizontal test specimens in the as-built condition was 4.86% higher than the heat-treated condition, whereas the ultimate tensile strength of vertical test specimens in the as-built condition was 5.55% higher than the heat-treated condition. The impact resistance of horizontal test specimens in the heat-treated condition was 12.36% higher than the as-built condition, whereas the impact resistance of vertical test specimens in the heat-treated condition was 18.92% higher than the as-built condition. Briefly, the build direction directly affects the mechanical properties of components manufactured through the L-DED process, and it is possible to improve certain mechanical properties, such as ductility and toughness, through heat treatment.