Dry deposition contributes a substantial part of the total deposition of acidic pollutants and acid precursors to agricultural systems. However, because of the relative intractability of measurement of dry deposition fluxes, little work has been done to directly quantify dry inputs of pollutants to crops. In this research, foliar surface sampling (‘leaf-washing’) methods were developed and shown to be a practical and fairly precise means of monitoring the accumulation of dry-deposited SO 4 2− and NO 3 − on plant surfaces. Leaching of these ions from plant tissues was shown to be negligible; however, uptake by plants (e.g. stomatal gas exchange of SO 2 or HNO 3 and/or assimilation of surface accumulations of materials) is not accounted for by the sampling method. The significance of dry deposition to modification of the chemical microenvironment of leaf surfaces appears to be a factor of 3 to 20 or more greater than that of wet deposition alone. This is due to the cyclic reactivation of accumulated materials by dew and light rains, which may dissolve and mobilize, but not remove, the pollutant surface deposit. Therefore, while dry deposition of SO 2 and SO 4 2− containing particles may contribute only part of the total mass of sulfur inputs to crop systems, the exposure of plant surface tissue to pollutants can be dominated by the dry-deposited material. The alteration of leaf surface chemistry may contribute to possible stress-producing mechanisms such as reduction of cuticular integrity, cellular injury and death, enhanced leaching of primary and secondary metabolites, and changes in pathogen infection efficiency.