Excessive production of transforming growth factor β1 (TGF-β1) in activated hepatic stellate cells (aHSCs) promotes liver fibrosis by activating the TGF-β1/Smad signaling pathway. Thus, specifically inhibiting the pro-fibrotic activity of TGF-β1 in aHSCs is an ideal strategy for treating liver fibrosis. Overexpression of platelet-derived growth factor β receptor (PDGFβR) has been demonstrated on the surface of aHSCs relative to normal cells in liver fibrosis. Interferon-gamma peptidomimetic (mIFNγ) and truncated TGF-β receptor type II (tTβRII) inhibit the TGF-β1/Smad signaling pathway by different mechanisms. In this study, we designed a chimeric protein by the conjugation of (1) mIFNγ and tTβRII coupled via plasma protease-cleavable linker sequences (FNPKTP) to (2) PDGFβR-recognizing peptide (BiPPB), namely BiPPB-mIFNγ-tTβRII. This novel protein BiPPB-mIFNγ-tTβRII was effectively prepared using Escherichia coli expression system. The active components BiPPB-mIFNγ and tTβRII were slowly released from BiPPB-mIFNγ-tTβRII by hydrolysis using the plasma protease thrombin in vitro. Moreover, BiPPB-mIFNγ-tTβRII highly targeted to fibrotic liver tissues, markedly ameliorated liver morphology and fibrotic responses in chronic liver fibrosis mice by both inhibiting the phosphorylation of Smad2/3 and inducing the expression of Smad7. Meanwhile, BiPPB-mIFNγ-tTβRII markedly reduced the deposition of collagen fibrils and expression of fibrosis-related proteins in acute liver fibrosis mice. Furthermore, BiPPB-mIFNγ-tTβRII showed a good safety performance in both liver fibrosis mice. Taken together, BiPPB-mIFNγ-tTβRII improved the in vivo anti-liver fibrotic activity due to its high fibrotic liver-targeting potential and the dual inhibition of the TGF-β1/Smad signaling pathway, which may be a potential candidate for targeting therapy on liver fibrosis.
Read full abstract