Pepgen-P15 is a combination of an organic hydroxyapatite matrix derived from bovine sources, combined with a synthetic peptide known as P-15. The interaction between α2β1 integrin and the P15 chain triggers both intracellular and extracellular signaling pathways, resulting in the production of growth factors. Three-dimensional (3D) printing has recently emerged as an innovative strategy for developing personalized therapies in bone tissue regeneration. In this research, various ratios of calcium magnesium silicate (bredigite) nanoparticles were used to modify 3D printed scaffolds made of xanthan gum and polycaprolactone (PCL) via fused deposition modeling (FDM). Scaffolds were subsequently treated with an alkaline solution, covered with graphene oxide, and finally, Pepgen-P15 was applied. the effects of xanthan gum were assessed using swellability and contact angle tests. The results indicated that, the prepared scaffolds exhibited suitable degradation rates, mechanical characteristics, and apatite formation. Alizarin red and alkaline phosphatase assays were also conducted to evaluate the scaffolds’ effectiveness in promoting bone cell differentiation during cell culture. Furthermore, the surface of the scaffold was examined to determine the amount of Pepgen-P15 loaded and released. According to the findings, the scaffold composed of 20 % bredigite and 0.3 % graphene oxide, coated with Pepgen-P15, demonstrate optimal mechanical properties, cell adherence, development, and proliferation. Typically, it is a good candidate for use in bone tissue engineering.