This study aims to optimize the node deployment of underwater wireless sensor networks (UWSNs) using intelligent optimization algorithms and robot collaboration technology to enhance network performance and coverage. The study employs the chemical reaction optimization (CRO) algorithm, which combines the advantages of genetic algorithms, simulated annealing algorithms, and ant colony algorithms. The CRO algorithm is enhanced through a structure correction function to determine the optimal node deployment scheme to achieve effective and optimal coverage control of the UWSN. Additionally, the flexibility and autonomy of robots are leveraged to improve the efficiency of node deployment and address the unique challenges posed by the underwater environment. Furthermore, the study conducts a comparative analysis of different intelligent optimization algorithms and demonstrates the effectiveness and advantages of the enhanced CRO algorithm in optimizing node deployment for UWSNs. The study findings reveal that the improved algorithm achieves an average coverage rate of 95.66%, significantly outperforming traditional intelligent optimization algorithms. The coverage of UWSNs can be significantly improved by utilizing the enhanced CRO algorithm and robot collaboration technology for node deployment optimization, which offers an effective approach for achieving optimal node deployment. Moreover, the rational deployment of nodes enhances the monitoring capability, resource utilization efficiency, and accuracy of environmental monitoring in underwater networks. The results of this study hold great practical significance for underwater environment monitoring, marine resource exploration, and marine scientific research.
Read full abstract