Plasma medicine is a rapidly expanding new field of interdisciplinary research that combines physics, chemistry, biology, and medicine. Non-thermal atmospheric pressure plasma (NTAPP) has recently been applied to living cells and tissues, and has emerged as a novel technology for medical applications, such as wound healing, blood coagulation, and cancer treatment. NTAPP was found to affect cells indirectly through the treatment of cells with previously prepared medium irradiated by NTAPP, termed plasma-activated medium (PAM). The treatment of culture media with NTAPP results in the generation of a large amount of reactive oxygen species and reactive nitrogen species, and their derived species. We found that PAM triggered a spiral apoptotic cascade in the mitochondrial-nuclear network in A549 cancer cells. This process induced the depletion of total cellular NAD+ and elevations in intracellular calcium ion, ultimately leading to cell death. We also detected the production of hydroxyl radical and elevations in intracellular ferrous ions in PAM-treated cells. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. However, difficulties are associated with applying PAM to the clinical phase because culture media cannot be used for medical treatments. The anti-tumor activity of plasma-activated Ringer's solution was significantly stronger than that of PAM. At the end, we herein demonstrated the advantages of the combined application of plasma-activated acetate Ringer's solution and hyperthermia, a heat treatment at 42℃, for A549 cancer cell death and elucidated the underlying mechanisms.