A compact model that combines numerical simulations using AFORS-HET and accurate equivalent circuit modelling is proposed and used to interpret the origins of the degradation and anomality's in the performance of the a-Si:H/c-Si heterojunction solar cells and its parameters at low temperature. The interpretations are applied to several trends reported on real cells. It is shown that as T decreases the a-Si:H(i) layer is depleted gradually from holes and that the cell operation fails once the layer is totally depleted and becoming intrinsic. The failure is caused by a substantial and sharp increase in the cell series resistance causing the collapse of the fill factor and of the cell current. It is found that at low temperature the open circuit voltage is significantly affected and its temperature dependence strongly distorted by hole depletion in the a-Si:H(i) spacer especially when the TCO work function is not appropriate. It is aslo shown that the S-shape in the cell I-V characteristics under illumination is closely linked to the TCO barrier reverse saturation current which explains its higher probability of appearnce at low temperature. Finally, it is concluded that the HJT cell would perform optimally down to the low 200 K range when the a-Si:H(p) is heavily doped and the front contact is ideally ohmic. Failing to satisfy such conditions the temperature range in which the HJT cell is useful is very limited.
Read full abstract