The basic design parameters and operational conditions of an enhanced vibratory lapping machine are considered. The main purpose of the research is to define the influence of different machining regimes on the roughness parameters of flat surfaces of parts made of C22 steel. The experiments are carried out at different controllable conditions of the vibratory lapping process: amplitudes of vibrations of the upper lap, forced frequencies, machining durations, and lapping paste types. The obtained results are shown in the form of bar charts describing the dependencies of the surface roughness on the machining conditions mentioned above. The major scientific novelty consists in the further development of the technologies of lapping and polishing of flat surfaces using vibratory machines with an electromagnetic drive. The presented research can be used by engineers and technologists while improving existent designs of vibratory lapping-polishing machines, as well as enhancing the corresponding machining processes.
Read full abstract