Data on antimicrobial resistance (AMR) among children in Nepal are limited. Here we have characterized the causes of bacterial bloodstream infections (BSIs), antimicrobial resistance patterns and the mechanisms of β-lactamase production in Enterobacterales among children attending outpatient and inpatient departments of a secondary care paediatric hospital in Nepal. We retrospectively collected demographic and clinical data of culture-proven bacterial BSIs between January 2017 and December 2022 among children <18 years attending a 50-bedded paediatric hospital. Stored isolates were subcultured for antimicrobial susceptibility testing against commonly used antimicrobials. Enterobacterales displaying non-susceptibility to β-lactams were phenotypically and genotypically investigated for ESBLs, plasmid-mediated AmpC (pAmpC) β-lactamases and carbapenemases. A total of 377 significant bacteria were isolated from 27 366 blood cultures. Among 91 neonates with a BSI, Klebsiella pneumoniae (n = 39, 42.4%), Pseudomonas aeruginosa (n = 15, 16.3%) and Acinetobacter baumannii complex (n = 13, 14.1%) were most common. In the non-neonates, 275/285 (96.5%) infections were community-acquired including Staphylococcus aureus (n = 89, 32.4%), Salmonella Typhi (n = 54, 19.6%) and Streptococcus pneumoniae (n = 32, 11.6%). Among the 98 S. aureus, 29 (29.6%) were methicillin-resistant Staphylococcus aureus. K. pneumoniae and Escherichia coli demonstrated non-susceptibility to extended-spectrum cephalosporins and carbapenems in both community and hospital-acquired cases. For E. coli and K. pneumoniae, blaCTX-M (45/46), blaEBC (7/10) and blaOXA-48 (5/6) were common among their respective groups. We determined significant levels of AMR among children attending a secondary care paediatric hospital with BSI in Nepal. Nationwide surveillance and implementation of antimicrobial stewardship policies are needed to combat the challenge imposed by AMR.
Read full abstract