M1dG (3-(2′-deoxy-β-d-erythro-pentofuranosyl)pyrimido[1,2-a]purin-10(3H)-one) lesions are mutagenic in bacterial and mammalian cells, leading to base substitutions (mostly M1dG to dT and M1dG to dA) and frameshift mutations. M1dG is produced endogenously through the reaction of peroxidation products, base propenal or malondialdehyde, with deoxyguanosine residues in DNA. The mutagenicity of M1dG in Escherichia coli is dependent on the SOS response, specifically the umuC and umuD gene products, suggesting that mutagenic lesion bypass occurs by the action of translesion DNA polymerases, like DNA polymerase V. Bypass of DNA lesions by translesion DNA polymerases is conserved in bacteria, yeast, and mammalian cells. The ability of recombinant human DNA polymerase η to synthesize DNA across from M1dG was studied. M1dG partially blocked DNA synthesis by polymerase η. Using steady-state kinetics, we found that insertion of dCTP was the least favored insertion product opposite the M1dG lesion (800-fold less efficient than opposite dG). Extension from M1dG·dC was equally as efficient as from control primer-templates (dG·dC). dATP insertion opposite M1dG was the most favored insertion product (8-fold less efficient than opposite dG), but extension from M1dG·dA was 20-fold less efficient than dG·dC. The sequences of full-length human DNA polymerase η bypass products of M1dG were determined by LC-ESI/MS/MS. Bypass products contained incorporation of dA (52%) or dC (16%) opposite M1dG or −1 frameshifts at the lesion site (31%). Human DNA polymerase η bypass may lead to M1dG to dT and frameshift but likely not M1dG to dA mutations during DNA replication.
Read full abstract