Peaches (Prunus persica L.) are an important crop in the United States with California leading the nation in peach production, with approximately 505,000 tons valued at $378.3 million (USDA National Agricultural Statistics Service, 2021, https://www.nass.usda.gov/). From April to July 2022, symptoms of branch and scaffold canker as well as shoot dieback were observed in three peach (cvs. Loadel, Late Ross and Starn) orchards located in San Joaquin County, California. Samples were collected from about 12 trees for each cultivar. Fast-growing, white, flat colonies were consistently isolated from active cankers on acidified potato dextrose agar (APDA) following the method described by (Lawrence et al. 2017). Pure fungal cultures were obtained by transferring single hyphal tips onto new APDA Petri plates. A total of 22 isolates were obtained. Each fungal isolate was recovered from a single diseased branch (40 to 55% recovery). All isolates in this study shared similar morphological characteristics. Fungal colonies were fast-growing with relatively even but slightly dentate margin, flat with white to off-white mycelium that turned vinaceous buff to pale greyish sepia (Rayner 1970) with age. Black, globose, ostiolated pycnidia, 0.8-(1.3)-2.2 mm diameter, with brownish surface hyphae formed on peach wood embedded in PDA after approximately three weeks and exudated buff-colored mucilage. Pycnidia were both solitary and aggregated and had multiple internal locules sharing invaginated walls. Conidiogenous cells were hyaline, smooth-walled, septate, tapering towards the apex, 13-(18.2)-25.1 × 0.8-(1.3)-1.9 µm (n = 40). Conidia were hyaline, allantoid, smooth, aseptate, 5.5-(6.3)-7.1 × 1.4-(1.9)-2.3 µm (n = 40). Genomic DNA was extracted and sequences of the internal transcribed spacer region (ITS) using ITS5/ITS4 universal primers, translation elongation factor 1α gene (TEF) using primers EF1-728F/EF1-986R, second largest subunit of RNA polymerase II (RPB2) using primers RPB2-5F2/fRPB2-7cR, and actin gene region (ACT) using primers ACT-512F/ACT-783R were obtained and compared with sequences available in GenBank (Lawrence et al. 2018; Hanifeh et al. 2022). Isolates were identified as Cytospora azerbaijanica following DNA sequencing and morphological identification. Consensus sequences of the four genes of two representative isolates (SJC-66 and SJC-69) were deposited into GenBank database (ITS: OQ060581 and OQ060582; ACT: OQ082292, OQ082295; TEF: OQ082290 and OQ082293; RPB2: OQ082291 and OQ082294). The Basic Local Alignment Search Tool (BLAST) indicated that the sequenced RPB2 genes of isolates (SJC-66 and SJC-69) were at least 99% identical to that of Cytospora sp. strain shd47 (Accession: MW824360) covering at least 85% of the sequences. The actin genes from our isolates were at least 97.85% identical to that of Cytospora sp. strain shd47 (Accession: MZ014513), covering 100% of the sequences. The translation elongation factor gene from isolates (SJC-66 and SJC-69) was at least 96.4% identical to that of Cytospora sp. strain shd166 (Accession: OM372512), covering 100% of the query. Those top hit strains belong to C. azerbaijanica, recently reported by Hanifeh et al. (2022). Pathogenicity tests were performed by inoculating eight wounded, 2- to 3-year-old healthy branches on each of eight 7-year-old peach trees, cvs. Loadel, Late Ross and Starn, using 5-mm-diameter mycelium plugs collected from the margin of an actively growing fungal colony on APDA. Controls were mock-inoculated with sterile agar plugs. Inoculation sites were covered with petroleum jelly and wrapped with Parafilm to keep moisture. The experiment was performed twice. After four months, inoculation tests resulted in vascular discoloration (canker) above and below the inoculation sites (average necrosis length of 114.1 mm). Cytospora azerbaijanica was re-isolated from all infected branches (70 to 100% recovery) completing Koch's postulates. Controls remained symptomless and no fungi were isolated from the slightly discolored tissue. Cytospora species are destructive canker and dieback pathogens of numerous woody hosts worldwide. Recently, C. azerbaijanica was reported in causing canker disease of apple trees in Iran (Hanifeh et al. 2022). To our knowledge, this is the first report of C. azerbaijanica causing canker and shoot dieback of peach trees in the United States and worldwide. These findings will aid towards a better understanding of genetic diversity and host range of C. azerbaijanica.
Read full abstract