ABSTRACTBackground/aims: Connective tissue growth factor (CTGF) is a downstream mediator of transforming growth factor-beta 1 (TGF-β1) and TGF-β1-induced CTGF expression is regulated through SMAD and mitogen-activated protein kinase (MAPK) signaling pathways. However, little is known about the localization of CTGF and TGF-β1 signaling cascades during incisor development. Therefore, we aimed to investigate the distribution pattern of TGF-β1, CTGF, phosphorylated-SMAD2/3 (p-SMAD2/3), and phosphorylated-ERK1/2 (p-ERK1/2) in the developing mouse incisors.Materials and methods: ICR mice heads of embryonic (E) day 16.5, postnatal (PN) day 0.5 and PN3.5 were processed for immunohistochemistry.Results: From E16.5 to PN3.5, moderate to strong staining for TGF-β1 and CTGF was localized in stellate reticulum (SR), transit amplifying (TA) cells, outer enamel epithelium (OEE), preameloblasts (PA), preodontoblasts (PO), and dental papilla (DP). p-SMAD2/3 was weakly positive in SR and OEE at E16.5 and PN0.5 but was strongly positive in SR and OEE at PN3.5. Particularly, in the stem cell niche, p-SMAD2/3 was only localized in SR cells adjacent to OEE. There was no staining for p-SMAD2/3 in TA cells, PA and PO, although weak to moderate staining for p-SMAD2/3 was seen in DP. From E16.5 to PN3.5, p-ERK1/2 was negative in TA cells, OEE, PA and PO, whereas weak to moderate staining for p-ERK1/2 was observed in SR. DP was moderately stained for p-ERK1/2.Conclusions: TGF-β1 and CTGF show a similar expression, while p-SMAD2/3 and p-ERK1/2 exhibit differential distribution pattern, which indicates that CTGF and TGF-β1 signaling cascades might play a regulatory role in incisor development.
Read full abstract