This paper proposes a transmission structure of zero forcing (ZF) receiver for uplink cell-free massive multiple-input multiple-output (MIMO) systems with device-to-device (D2D) communications, followed by a rate analysis. We assumed that D2D users (DUEs) can utilize orthogonal radio resources to improve the efficiency of the scarce utilization or repurpose the time–frequency-spectrum resources currently used by the cell-free users (CFUEs). Assuming that the imperfect channel state information (CSI) is realizable, after that, the use-and-forget bounding technique is then used to respectively obtain the closed-form expressions of the CFUEs and DUEs, which provide the lower bounds on the ergodic approximate realizable rate of both communication links. First, we calculate the minimum-mean-square error (MMSE) estimation for all channels. Then, the derived results of the achievable uplink sum rate provide us with a tool that enables us to explain how some important parameters, such as the number of access points (APs)/CFUEs, each AP/CFUE/antenna, and the density of DUEs, affect system performance, highlighting the significance of cooperation between cell-free massive MIMO and D2D communication.
Read full abstract