Introduction. Briquetting is an effective way to improve technological, environmental and economic indicators of waste utilization in various industries. Roller presses hold a special place among the aggregates for briquetting materials, since they are characterized by high reliability and productivity, as well as low energy consumption. It is known that the density of the source material conditions the compression force the press rollers apply to the material to obtain briquettes of the required quality. Thus, a press with given design parameters provides the required quality of briquettes in a certain range of the source material densities. However, there is currently no method for selecting the design parameters of a roller press depending on the density of the material to be briquetted. A discrepancy between the source material density and the roller press parameters can either result in the poor-quality of briquettes due to insufficient power, or in the employment of a press with excess capacity. Both alternatives are unacceptable, so the development of a method for choosing the roller press design parameters, depending on the density of the source material, can be considered relevant. Research objective is to develop a method for selecting the design parameters of a roller press depending on source material density. Methods of research. The paper considers the roller press pressing zone showing an increased density of the source material. The boundary of the pressing zone is determined by the pressing angle, which depends on the source material density and press roller radius. To determine the pressing angle value, a laboratory method has been developed, which consists in pressing batches of preheated source material in a special form at different force values. The quality indicators of the obtained briquettes are compared with the standard ones, and a briquette with the required values of quality indicators obtained with the least effort is selected. Then, the briquette density and compaction coefficient are determined by hydrostatic weighing. Based on the results obtained, the pressing angle is calculated. The values of the pressing force and the roller rotation resistance moment are obtained by employing the obtained pressing angle value, given roller press design parameters, as well as the pressed material physical and mechanical characteristics. Taking into account the obtained value of the resistance moment, as well as the specified operating speed of rollers rotation, the drive power required to obtain high-quality briquettes from a given source material is determined. Comparison of the calculated capacity and the nameplate capacity of the press indicates whether the considered roller press model can produce high-quality briquettes from the source material with a given density. Conclusions. The developed method allows to take into account specific production conditions when choosing a roller press model, and, consequently, reduce the expenditures for pressing equipment. The proposed method can also be used when designing new roller press models when determining rational design parameters of rollers.
Read full abstract