Abstract. Unmanned aerial vehicles (UAVs) equipped with laser scanners have been widely used for various purposes, such as in construction sites, forestry, and disaster management, as they can obtain high density point clouds with millimeter to centimeter scale accuracy. However, systematic errors in the height of a UAV relative to the earth's surface may occur owing to the method of direct georeferencing using the global navigation system satellite (GNSS) and inertial measurement unit (IMU). Therefore, to enable highly accurate surveying, adjustments must be made using ground control points. However, interpreting the ground control points of a discrete, inhomogeneous density point cloud requires a high degree of skill and effort. In this study, a high-end UAV laser scanner was used to obtain the point clouds of a site using a white circular target enclosed within a black frame in a measurement setup of 500 points/m2. The center coordinates of the circle, calculated using the conventional and proposed methods, were evaluated qualitatively and quantitatively. As a result, the average of 10 error distances was found to be 0.028 m for the weighted center of gravity method, 0.014 m for the fitting circle equation method, and 0.008 m for the proposed method. These results corresponded to one-fifth to one-half of the 0.045-m point intervals of the measurement plan. Thus, using the reflection intensity of point clouds, the circular target observation could be performed.
Read full abstract