The study was designed to explore how cinobufagin (CB) regulates the development of non-small cell lung cancer (NSCLC) cells through lipid rafts. The effects of CB at gradient concentrations (0, 0.5, 1 and 2 µM) on NSCLC cell viability, apoptosis, reactive oxygen species (ROS) level, phosphorylation of Akt, and apoptosis- and lipid raft-related protein expression were assessed by MTT assay, flow cytometry and Western blot. Cholesterol and sphingomyelin were labeled with BODIPY to evaluate the effect of CB (2 µM) on them. Sucrose density gradient centrifugation was used to extract lipid rafts. The effect of CB on the expression and distribution of caveolin-1 was determined by immunofluorescence, quantitative reverse transcription polymerase chain reaction and Western blot. After overexpression of caveolin-1, the above experiments were performed again to observe whether the regulatory effect of CB was reversed. CB inhibited NSCLC cell viability while promoting apoptosis and ROS level. CB redistributed the lipid content on the membrane surface and reduced the content of caveolin-1 in the cell membrane. In addition, CB repressed the activation of AKT. However, caveolin-1 overexpression reversed the effects of CB on apoptosis, AKT activation and lipid raft. CB regulates the activity of Akt in lipid rafts by inhibiting caveolin-1 expression to promote NSCLC cell apoptosis.
Read full abstract