Recent pharmacotherapy trials in Parkinson's disease (PD) using dopaminergic neuroimaging as outcome parameter failed to show significant relationships between imaging and clinical results. One possible explanation is that there is a non-linear relationship between striatal denervation and motor performance reflecting a statistical "floor" effect in the imaging data with advanced disease. Both the motor manifestations and the striatal dopamine denervation of idiopathic PD, however, are typically asymmetric and more meaningful associations may be found by comparing data from the least denervated striatum with motor performance in the corresponding body side. PD patients (n=28) underwent [11C]beta-CFT dopamine transporter (DAT) positron emission tomography (PET) and grooved pegboard testing. Voxel-based analysis of DAT PET and bimanual pegboard scores demonstrated significant correlation clusters within the bilateral striata (P<0.001). However, findings were most prominent in the least denervated striatum. There was a significant inverse correlation between pegboard scores of the least affected arm and DAT binding of the least denervated striatum (Rs=-0.69, P<0.0001) but no significant correlation between pegboard scores of the clinically most affected arm and DAT binding of the most denervated striatum (Rs=-0.15, ns). These data indicate that the robustness of the grooved pegboard test as a biomarker for nigrostriatal denervation in PD mainly reflects the relationship between test performance of the clinically least affected limb and the least denervated striatum. These findings indicate that there is both a statistical "floor" and "ceiling" effect for the most affected striatal and body sides that must be considered when employing imaging as an outcome measure in clinical trials in PD.
Read full abstract