With few exceptions, aposematically colored poison frogs sequester defensive alkaloids, unchanged, from dietary arthropods. In the Neotropics, myrmicine and formicine ants and the siphonotid millipede Rhinotus purpureus are dietary sources for alkaloids in dendrobatid poison frogs, yet the arthropod sources for Mantella poison frogs in Madagascar remained unknown. We report GC-MS analyses of extracts of arthropods and microsympatric Malagasy poison frogs (Mantella) collected from Ranomafana, Madagascar. Arthropod sources for 11 "poison frog" alkaloids were discovered, 7 of which were also detected in microsympatric Mantella. These arthropod sources include three endemic Malagasy ants, Tetramorium electrum, Anochetus grandidieri, and Paratrechina amblyops (subfamilies Myrmicinae, Ponerinae, and Formicinae, respectively), and the pantropical tramp millipede R. purpureus. Two of these ant species, A. grandidieri and T. electrum, were also found in Mantella stomachs, and ants represented the dominant prey type (67.3% of 609 identified stomach arthropods). To our knowledge, detection of 5,8-disubstituted (ds) indolizidine iso-217B in T. electrum represents the first izidine having a branch point in its carbon skeleton to be identified from ants, and detection of 3,5-ds pyrrolizidine 251O in A. grandidieri represents the first ponerine ant proposed as a dietary source of poison frog alkaloids. Endemic Malagasy ants with defensive alkaloids (with the exception of Paratrechina) are not closely related to any Neotropical species sharing similar chemical defenses. Our results suggest convergent evolution for the acquisition of defensive alkaloids in these dietary ants, which may have been the critical prerequisite for subsequent convergence in poison frogs between Madagascar and the Neotropics.
Read full abstract