As the penetration rate of renewable energy in the power grid increases, the imbalance between power supply and demand has become one of the key issues. Buildings and their heating, ventilation, and air conditioning (HVAC) systems are considered excellent flexible demand response (DR) resources that can reduce peak loads to alleviate operational pressures on the power grid. Centralized chiller plants are regarded as flexible resources with large capacity and rapid adjustability. The direct load control of chiller plants can respond to the power grid within minutes, making them highly suitable for participation in emergency DR. However, existing studies are generally based on simulations and lack experimental research in actual large-scale buildings to demonstrate the effectiveness of this method and provide related lessons learned. This study conducted field experiments on a centralized chiller plant within an industrial building in Guangdong, China. The results indicate that the strategy of shutting down chiller plants is an effective DR measure. It can complete the load reduction process within 15 min, rapidly decreasing the system power by 380~459 kW, with a maximum duration of up to 50 min, without significantly affecting the thermal comfort of indoor occupants. Additionally, the impact of existing control logic on the participation of chiller plants in the DR process is also discussed.
Read full abstract