To observe the role of α7 nicotinic acetylcholine receptor (α7nAChR) in the protection against delirium by the use of dexmedetomidine (DEX) in endotoxin derived delirium and its mechanism. 100 male adult C57BL/6 mice were randomly divided into normal saline control group (NS group), DEX control group, lipopolysaccharide (LPS) induced endotoxemia model group (LPS group), DEX protection group (DEX+LPS group), and α-bungarotoxin antagonism group (α-BGT+DEX+LPS group), with 20 mice in each group. A model of endotoxemia was reproduced by intraperitoneal injection of LPS 20 mg/kg, and the mice in NS group and DEX control group were given equivalent sterile normal saline. The mice in DEX control group, DEX+LPS group, and α-BGT+DEX+LPS group were intraperitoneally injected with DEX 40 μg/kg 15 minutes before LPS injection. The mice in α-BGT+DEX+LPS group were intraperitoneally injected with α7nAChR inhibitor α-BGT 1 μg/kg 15 minutes before DEX injection. The mice in NS group were given equivalent sterile normal saline. Ten mice in each group were assigned for open field test before and 24 hours after model reproduction, and the mice were then sacrificed to obtain the specimens. The levels of tumor necrosis factor-α (TNF-α) and neuron-specific enolase (NSE) in serum were determined by enzyme-linked immune sorbent assay (ELISA). Western Blot method was used to determine the expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in hippocampus. Another 10 mice were subjected to new object recognition test to observe the total exploration time during training period and preference index at 3 hours and 24 hours after LPS challenge. There were no significant differences in all parameters between NS group and DEX control group. (1) It was shown by the open field test results that there were no significant differences in all parameters of open field test before model reproduction among all the groups. Twenty-four hours after model reproduction, when compared with NS group, the mice in LPS group showed that they had the ability of cognition of new environment, but learning and memory abilities were lowered, and tension was increased. DEX could significantly attenuate the degree of delirium, however, the protection of DEX from the delirious syndrome was antagonized partly by α-BGT. (2) The new object recognition test results showed that compared with NS group, the ability of exploring new object was decreased in LPS group. DEX could significantly improve the exploration ability. However, DEX failed to control the delirious syndrome in α-BGT+DEX+LPS group. (3) The results of ELISA showed that the levels of TNF-α and NSE in serum were significantly increased in LPS groups as compared with that in NS group, and the levels of TNF-α and NSE were significantly decreased in DEX+LPS group. However, α-BGT could antagonise the protective effect of DEX [TNF-α (ng/L) in NS, LPS, DEX+LPS and α-BGT+DEX+LPS groups was 23.72±3.13, 808.78±87.86, 192.96±31.47, 829.99±80.98, respectively, and NSE (μg/L) was 8.70±0.74, 25.90±3.03, 18.10±2.14, and 23.12±2.21, respectively, all P < 0.01]. (4) The results of Western Blot showed that compared with NS group, the protein expression of ChAT in LPS group was significantly declined, and the protein expression of AChE was significantly increased. DEX could reverse the expressions of ChAT and AChT, however, α-BGT could reverse the protective effect of DEX [ChAT (gray value) in NS, LPS, DEX+LPS and α-BGT+DEX+LPS groups was 1.536±0.150, 0.381±0.138, 0.914±0.173, 0.628±0.088, respectively, and AChE (gray value) was 0.382±0.201, 1.843±0.325, 0.898±0.155, and 1.470±0.220, respectively, P < 0.05 or P<0.01]. Delirium syndrome may occur in mice with endotoxemia. DEX could attenuate endotoxemia-associated delirium syndrome through transforming central neurotransmitter, and its mechanism maybe related with α7nAChR.