Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases.
Read full abstract