Abstract Given a tensor category $\mathcal{C}$ over an algebraically closed field of characteristic zero, we may form the wreath product category $\mathcal{W}_n(\mathcal{C})$. It was shown in [10] that the Grothendieck rings of these wreath product categories stabilise in some sense as $n \to \infty $. The resulting “limit” ring, $\mathcal{G}_\infty ^{\mathbb{Z}}(\mathcal{C})$, is isomorphic to the Grothendieck ring of the wreath product Deligne category $S_t(\mathcal{C})$ as defined by [9] (although it is also related to $FI_G$-modules). This ring only depends on the Grothendieck ring $\mathcal{G}(\mathcal{C})$. Given a ring $R$ that is free as a $\mathbb{Z}$-module, we construct a ring $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ that specialises to $\mathcal{G}_\infty ^{\mathbb{Z}}(\mathcal{C})$ when $R = \mathcal{G}(\mathcal{C})$. We give a description of $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ using generators very similar to the basic hooks of [5]. We also show that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is a $\lambda $-ring wherever $R$ is and that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is (unconditionally) a Hopf algebra. Finally, we show that $\mathcal{G}_\infty ^{\mathbb{Z}}(R)$ is isomorphic to the Hopf algebra of distributions on the formal neighbourhood of the identity in $(W\otimes _{\mathbb{Z}} R)^\times $, where $W$ is the ring of Big Witt Vectors.
Read full abstract