This study addresses the issue of atmospheric delay correction for the rational polynomial coefficient (RPC) model associated with spaceborne synthetic aperture radar (SAR) imagery under conditions lacking ephemeris data, proposing a novel approach to enhance the geometric positioning accuracy of RPC models. A satellite position inversion method based on the vector-autonomous intersection technique was developed, incorporating ionospheric delay and neutral atmospheric delay models to derive atmospheric delay errors. Additionally, an RPC model reconstruction approach, which integrates atmospheric correction, is proposed. Validation experiments using GF-3 satellite imagery demonstrated that the atmospheric delay values obtained by this method differed by only 0.0001 m from those derived using the traditional ephemeris-based approach, a negligible difference. The method also exhibited high robustness in long-strip imagery. The reconstructed RPC parameters improved image-space accuracy by 18–44% and object-space accuracy by 19–32%. The results indicate that this approach can fully replace traditional ephemeris-based methods for atmospheric delay extraction under ephemeris-free conditions, significantly enhancing the geometric positioning accuracy of SAR imagery RPC models, with substantial application value and development potential.
Read full abstract