The model analyzed in this paper is based on the model set forth by Aziz Alaoui et al. [Aziz Alaoui & Daher Okiye, 2003; Nindjin et al., 2006] with time delay, which describes the competition between the predator and prey. This model incorporates a modified version of the Leslie–Gower functional response as well as that of Beddington–DeAngelis. In this paper, we consider the model with one delay consisting of a unique nontrivial equilibrium E* and three others which are trivial. Their dynamics are studied in terms of local and global stabilities and of the description of Hopf bifurcation at E*. At the third trivial equilibrium, the existence of the Hopf bifurcation is proven as the delay (taken as a parameter of bifurcation) that crosses some critical values.