A novel delay-dependent stability criterion for Takagi-Sugeno (T-S) fuzzy systems with multiplicative noise is addressed in this paper subject to passivity performance. The general case of interval time-varying delay is considered for the practical control issue. For the criterion, an integral Lyapunov-Krasovskii function is proposed to derive some sufficient relaxed conditions and to avoid the derivative of the membership function. Moreover, a free-matrix inequality is adopted to deal with the delay terms such that the available derivative of time-varying delay is bigger than one. In order to employ a convex optimization algorithm to find the control gain, a projection lemma is applied to acquire the Linear Matrix Inequality (LMI) form of the sufficient conditions. With the obtained gains, a fuzzy controller is designed by the concept of Parallel Distributed Compensation (PDC) such that the delayed T-S fuzzy systems with multiplicative noise are asymptotically stable and passive in the mean square. Finally, a stabilization problem of the ship’s autopilot dynamic system and some comparisons are discussed during the simulation results.
Read full abstract