To elucidate the reaction mechanism and the origin of the enantioselectivity of the asymmetric dehydrative cyclization of allyl alcohol to cyclic ether catalyzed by a Cp-ruthenium complex and a chiral pyridinecarboxylic acid, (R)-X-Naph-PyCOOH, density functional theory (DFT) calculations were performed. According to the DFT calculations, the rate-determining step is the dehydrative σ-allyl formation step with ΔG‡ = 18.1 kcal mol-1 at 80 °C. This agrees well with the experimental data (ΔG‡ = 19.01 kcal mol-1 at 80 °C). The DFT result showed that both hydrogen and halogen bonds play a key role in the high enantioselectivity by facilitating the major R,SRu-catalyzed reaction pathway via a σ-allyl Ru intermediate to generate the major (S)-product. In contrast, the reaction is sluggish in the presence of the diastereomeric R,RRu catalyst with an apparent activation energy of 33.1 kcal mol-1; the minor (R)-product is formed via a typical π-allyl Ru intermediate and via a minor pathway for the cyclization step. In addition, the calculated activation Gibbs free energies, 14.4 kcal mol-1 for I < 16.8 kcal mol-1 for Br < 18.1 kcal mol-1 for Cl, reproduced the observed halogen-dependent reactivity with the (R)-X-Naph-PyCOOH ligands. The origin of the halogen trend was clarified by a structural decomposition analysis.