ABSTRACTThe primary objective of this review was to illustrate the significance of ceria–zirconia (CZ) mixed oxides as catalysts and catalyst supports as employed for a wide variety of catalytic applications both in the liquid and gaseous phases. In particular, we were interested in bringing together the recent literature pertaining to these mixed oxides with catalysis perspective. The most prominent application of CZ mixed oxides is in three-way catalysis (TWC) as oxygen storage and release material for several years by replacing cerium dioxide as it shows better efficiency and a high thermal stability. Doping with zirconium oxide, as it is alone a non-reducible oxide, makes the CZ mixed oxide a highly reactive, thermally stable, and more reducible with elevated oxygen storage capacity (OSC) that are important for TWC applications. Apart from the TWC use, the CZ mixed oxides have a huge number of applications, as a direct component or a support, ranging from water–gas shift reaction, reforming of hydrocarbons, dehydration of alcohols, CO2 utilization, catalytic combustion of pollutants, fine chemicals production, photocatalysis, and so on. All these applications are mainly dependent on three parameters of the mixed oxides, namely, OSC or redox nature, acid–base properties, and crystalline phases. Besides, most of the applications are influenced by the physical properties such as specific surface area, pore volume, pore diameter, crystallite size, and so on. In this review, many details pertaining to the synthesis of these mixed oxides by various conventional and non-conventional methods, their characterization by several techniques, and their application for various reactions of energy and environmental significance, as reported in the literature, are assessed.