Svalbard, located between 76°30′N and 80°50′N, is among the regions in the world with the most rapid temperature increase. We processed a cloud-free time-series of MODIS-NDVI for Svalbard. The dataset is interpolated to daily data during the 2000–2022 period with 232 m pixel resolution. The onset of growth, with a clear phenological definition, has been mapped each year. Then the integrated NDVI from the onset (O) of growth each year to the time of average (2000–2022) peak (P) of growth (OP NDVI) have been calculated. OP NDVI has previously shown high correlation with field-based tundra productivity. Daily mean temperature data from 11 meteorological stations are compared with the NDVI data. The OP NDVI values show very high and significant correlation with growing degree days computed from onset to time of peak of growth for all the meteorological stations used. On average for the entire Svalbard, the year 2016 first had the highest greening (OP NDVI values) recorded since the year 2000, then the greening in 2018 surpassed 2016, then 2020 surpassed 2018, and finally 2022 was the year with the overall highest greening by far for the whole 2000–2022 period. This shows a rapid recent greening of Svalbard very strongly linked to temperature increase, although there are regional differences: the eastern parts of Svalbard show the largest variability between years, most likely due to variability in the timing of sea-ice break-up in adjacent areas. Finally, we find that areas dominated by manured moss-tundra in the polar desert zone require new methodologies, as moss does not share the seasonal NDVI dynamics of tundra communities.
Read full abstract