Thanks to its biobased character with embedded biogenic carbon, chitin can aid in the transition to a sustainable circular economy by replacing fossil carbon from the geosphere. However, meeting current demands for material availability and environmental sustainability requires alternative methods limiting conventional chemical and energy-consuming chitin extraction from crustaceans. To assist future chitinous bioproduct development, this work analyzes the physicochemical properties and potential environmental sustainability of fungal chitin-glucan complexes. A conventional isolation procedure using sodium hydroxide, a weak acid, and short reaction times are applied to the fruiting body of 22 fungal species. Besides, the valorization of underutilized waste streams including Agaricus bisporus and Agaricus brunnescens stipes is investigated. The carbohydrate analysis renders chitin fractions in the range of 9.5-63.5 wt %, while yields vary from 4.2 to 29.9%, and the N-acetylation degree in found in between 53.0 and 98.7%. The sustainability of the process is analyzed using life cycle assessment (LCA), providing impact quantification for global warming potential, terrestrial acidification, freshwater eutrophication, and water use. With 87.5-589.3 kg·CO2-equiv per kilo, potentially lower global warming potential values in comparison to crustacean chitin are achieved. The crystallinity degree ranged from 28 to 78%, while the apparent chitin crystalline size (L020) is between 2.3 and 5.4 nm. Ten of the species yield α-chitin coexisting with semicrystalline glucans. Zwitterionic properties are observed in aqueous solutions, shifting from cationic to anionic at pH 4.5. With its renewable carbon content, fungal chitin is an environmentally sustainable alternative for high-value applications due to its balance of minimal treatment, low carbon footprint, material renewability, ease of isolation, thermal stability, zwitterionic behavior, biodegradability, and noncytotoxicity.