Boron-doped diamond electrodes (BDDEs) offer a highly efficient pathway to mineralize recalcitrant compounds due to their reduced energy requirements, fewer chemical inputs, and mechanical stability. In this work, the electrochemical degradation of paraquat (PQ) and diquat (DQ) was studied using an undivided cell (Condiacell®-type) at circumneutral pH, and under galvanostatic control. The roles of applied current density, volumetric flow rate, and herbicide concentration were systematically studied through a central composite design (CCD) using a closed-flow reaction setup. Under the best operating conditions (i.e., for PQ: 1.6 mA/cm2, 80 mL/min, and 70 mL/min, and 70 mg/L; and for DQ: 1.5 mA/cm2, 80 mL/min, and 73 mg/L), a spectrophotometric analysis evidenced that the herbicides were satisfactorily removed (ca. 100%) while mineralization degrees were above 90%. Furthermore, the produced effluents yielded significant increases in seed germination and root length, which suggest a reduction in toxicity. Energy consumptions of 0.13 and 0.18 kWh/g of TOC are reported with the electrochemical cells for the PQ and DQ treatments, respectively. The PQ and DQ treatments by electrooxidation are estimated to emit nearly 2.7 and 38.9 kg CO2/m3 of water treated, with a cost around USD 250/m3. Carbon emissions could be greatly decreased for PQ (0.28 kg CO2/m3) and DQ (0.40 kg CO2/m3) if electricity were generated from renewable resources. Although this study suggests that the use of BDDE can be considered as a green alternative for agrochemical removal due to lower carbon emissions, the environmental profile of the process is determined by the degree of renewability of the electrical grid of each country or region.
Read full abstract