Purpose A vaccination strategy to cover the susceptible population is key to containing the spread of any virus during a healthcare emergency. This study quantifies the susceptibility of a region based on initial infection rates to prioritize optimal vaccine distribution strategies. The authors propose a metric, the regional vulnerability index (RVI), that identifies the degree of susceptibility/vulnerability of a region to virus infections for strategically locating hubs for vaccine storage and distribution. Design/methodology/approach A two-phase methodology is used to address this problem. Phase 1 uses a modified Susceptible-Infected-Recovered (SIR) model, ModSIR, to estimate the RVI. Phase 2 leverages this index to model a P-Center problem, prioritizing vulnerable regions through a Mixed Integer Quadratically Constrained Programming model, along with three variations that incorporate the RVI. Findings Results indicate a weighting scheme based on the population-to-RVI ratio fosters fair distribution and equitable coverage of vulnerable regions. Comparisons with the public distribution strategy outlined by the Government of India reveal similar zonal segregations. Additionally, the network generated by our model outperforms the actual distribution network, corroborated by network metrics such as degree centrality, weighted degree centrality and closeness centrality. Originality/value This research presents a novel approach to prioritizing vaccine distribution during pandemics by applying epidemiological predictions to an integer-programming framework, optimizing COVID-19 vaccine allocation based on historical infection data. The study highlights the importance of strategic planning in public health response to effectively manage resources in emergencies.
Read full abstract