In the past few decades, boreal summers have been characterized by an increasing number of extreme weather events in the Northern Hemisphere extratropics, including persistent heat waves, droughts and heavy rainfall events with significant social, economic, and environmental impacts. Many of these events have been associated with the presence of anomalous large-scale atmospheric circulation patterns, in particular, persistent blocking situations, i.e., nearly stationary spatial patterns of air pressure. To contribute to a better understanding of the emergence and dynamical properties of such situations, we construct complex networks representing the atmospheric circulation based on Lagrangian trajectory data of passive tracers advected within the atmospheric flow. For these Lagrangian flow networks, we study the spatial patterns of selected node properties prior to, during, and after different atmospheric blocking events in Northern Hemisphere summer. We highlight the specific network characteristics associated with the sequence of strong blocking episodes over Europe during summer 2010 as an illustrative example. Our results demonstrate the ability of the node degree, entropy, and harmonic closeness centrality based on outgoing links to trace important spatiotemporal characteristics of atmospheric blocking events. In particular, all three measures capture the effective separation of the stationary pressure cell forming the blocking high from the normal westerly flow and the deviation of the main atmospheric currents around it. Our results suggest the utility of further exploiting the Lagrangian flow network approach to atmospheric circulation in future targeted diagnostic and prognostic studies.
Read full abstract