ABSTRACT A huge amount of polyvinyl alcohol (PVA) fabric is abandoned from nuclear power plants every year, the traditional treatment process will occupy land resources and pollute the environment; therefore, a lot of research has been carried out on the chemical treatment of PVA fabric. Herein, the performance of degradation of polyvinyl alcohol under high-pressure and high-temperature conditions is investigated. The effects of the initial pH value, reaction temperature, molar ratio of H2O2/Fe2+, and H2O2 dosage on PVA degradation were evaluated. In the tested ranges in this work, the degradation of PVA fabric via high-pressure and high-temperature method was optimum at the initial pH value of 4, reaction temperature of 300℃, molar ratio of H2O2/Fe2+ as 10, and H2O2 dosage of 13 g/L. The PVA removal rate and TOC removal rate were 99.99% and 97.36%, respectively. Meanwhile, the high-pressure and high-temperature methods also had a great effect on the removal of Rhodamine-B and Reactive Red X-3B, the removal rates of Rhodamine-B and Reactive Red X-3B were 99.83% and 99.76%, respectively. The reaction mechanism of high-pressure and high-temperature methods was also discussed in this study.
Read full abstract