Abstract
To address the pollution caused by polyvinyl alcohol (PVA) waste, a composite photocatalyst is developed by sensitizing g-C3N4 with black phosphorus quantum dots (BPQDs) using a simple mechanical stirring method. Both g-C3N4 and BPQDs are inorganic nonmetallic semiconductors with well-matched band positions, facilitating efficient photoinduced charge transfer. The periodic table’s adjacent relationship between C, N and P elements allows easy formation of P-N or P-C bonds by replacing C or N atoms with P atoms. The resulting composite shows uniform decoration of two-dimensional layered g-C3N4 with BPQDs with an average size of 2.2 nm. Under solar light simulator irradiation for 20 min, the composite photocatalyst exhibits significantly enhanced photocatalytic activity, with PVA degradation efficiency increasing from 27.1% (pure g-C3N4) to 85.9%. Experimental results and density functional theoretical calculations suggest the formation of a Z-scheme route at the g-C3N4/BPQDs interface. This facilitates photoinduced electron transfer from g-C3N4 to BPQDs, leading to improved carrier production and separation, reduced charge-transfer resistance, and accelerated PVA degradation. The proposed composite photocatalyst holds promise for addressing PVA pollution and improving environmental sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.