The interaction between secondary phyllosilicate minerals and straw is crucial for preserving soil organic carbon (SOC) and fertility. However, the specific mechanism through which these minerals affect straw decomposition and its products in northeast China’s black soil remains unclear. In this study, montmorillonite, illite, and vermiculite were mixed with quartz sand and maize straw, inoculated with microbes, and incubated to analyze the effects of different secondary phyllosilicate minerals on the degradation of organic components in maize straw and the formation of soil humus. The results showed that montmorillonite significantly facilitated the decomposition of maize straw hemicellulose and lignin, which decreased by 95.85% and 76.38%, respectively. Conversely, vermiculite decelerated hemicellulose and lignin degradation. Regarding soil organic acids, lactic acid and malic acid were predominant, with the highest content being found after the montmorillonite treatment. Montmorillonite was the most effective in enhancing extractable humic-like substances, which increased by 71.68%. Montmorillonite increased the content of G0 (water dispersion group), G1 (sodium ion dispersion group), and G2 (sodium grinding dispersion group) complexes. The addition of secondary phyllosilicate minerals increased the organic carbon (OC) content in the G0, G1, and G2 samples, with montmorillonite demonstrating the most pronounced effect. Secondary phyllosilicate minerals increased the abundance of fungi, particularly Ascomycota, with the highest abundance being found after the montmorillonite treatment. In conclusion, our results indicated that montmorillonite facilitated the decomposition of lignocellulose in maize straw, enhanced the accumulation of humus, and promoted the formation of organic–mineral complexes. These findings provide valuable insights into the interaction between secondary phyllosilicate minerals and maize straw and have important implications for improving the quality of black soil in northeast China.
Read full abstract