Most popular superconducting circuits operate on information carried by ps-wide, μV-tall, single flux quantum (SFQ) pulses. These circuits can operate at frequencies of hundreds of GHz with orders of magnitude lower switching energy than complementary-metal-oxide-semiconductors (CMOS). However, under the stringent area constraints of modern superconductor technologies, fully-fledged, CMOS-inspired superconducting architectures cannot be fabricated at large scales. Unary SFQ (U-SFQ) is an alternative computing paradigm that can address these area constraints. In U-SFQ, information is mapped to a combination of streams of SFQ pulses and in the temporal domain. In this work, we extend U-SFQ to introduce novel building blocks such as a multiplier and an accumulator. These blocks reduce area and power consumption by 2\(\times\)and 4\(\times\)compared with previously proposed U-SFQ building blocks and yield at least 97% area savings compared with binary approaches. Using these multiplier and adder, we propose a U-SFQ Convolutional Neural Network (CNN) hardware accelerator capable of comparable peak performance with state-of-the-art superconducting binary approach (B-SFQ) in 32\(\times\)less area. CNNs can operate with 5–8 bits of resolution with no significant degradation in classification accuracy. For 5 bits of resolution, our proposed accelerator yields 5\(\times\)to 63\(\times\)better performance than CMOS and 15\(\times\)to 173\(\times\)better area efficiency than B-SFQ.
Read full abstract