Poly(ethylene glycol) (PEG)-based hydrogels are particularly challenging to degrade, which hinders efficient cell harvesting within the gel matrix. Here, highly branched copolymers of PEG methyl ether acrylate (PEGMA) and disulfide diacrylate (DSDA) (PEG-DS) with short primary chains and multiple pendent vinyl groups were synthesized by a "vinyl oligomer combination" approach. PEG-DS readily cross-links with thiolated gelatin (Gel-SH) to form hydrogels. Results demonstrate that shortening the primary chains of PEG-DS significantly enhances the viability of bone marrow mesenchymal stem cells (BMSCs) by up to 193.2%. Importantly, DS junctions can be easily cleaved into short primary chains using dithiothreitol (DTT), triggering ultrafast degradation of PEG-DS/Gel-SH hydrogels within 2 min under mild conditions and release of the encapsulated BMSCs. This study establishes a novel strategy to enhance the degradation of acrylate-based PEG hydrogels for three-dimensional (3D) cell culture and harvesting. These findings expand the potential applications of such hydrogels in various biomedical fields.
Read full abstract