Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders. LYG-409, a 2H-chromene derivative, was identified as a potent, selective, and orally bioavailable GSPT1 degrader with excellent antitumor activity in vivo (anti-Acute Myeloid Leukemia MV4-11 xenograft model: TGI = 94.34% at 30 mg/kg; prostate cancer 22Rv1 xenograft model: TGI = 104.49% at 60 mg/kg) and in vitro (KG-1 cells: IC50 = 9.50 ± 0.71 nM, DC50 = 7.87 nM) mediated by the degradation of GSPT1. In conclusion, LYG-409 exhibits potent GSPT1 degradation activity, demonstrating promising therapeutic efficacy and favorable safety profile. However, its potential drug resistance profile needs to be thoroughly evaluated in comparison with existing treatments. We hope LYG-409 can provide a valuable direction for the development of GSPT1 degraders.
Read full abstract