This study aims to examine the short-term peripheral choroidal thickness (PChT) response to signed defocus blur, both with and without native peripheral aberrations. This examination will provide insights into the role of peripheral aberration in detecting signs of defocus. The peripheral retina (temporal 15°) of the right eye was exposed to a localized video stimulus in 11 young adults. An adaptive optics system induced 2D myopic or hyperopic defocus onto the stimulus, with or without correcting native peripheral ocular aberrations (adaptive optics [AO] or NoAO defocus conditions). Choroidal scans were captured using Heidelberg Spectralis OCT at baseline, exposure (10, 20, and 30minutes), and recovery phases (4, 8, and 15minutes). Neural network-based automated MATLAB segmentation program measured PChT changes from OCT scans, and statistical analysis evaluated the effects of different optical conditions over time. During the exposure phase, NoAO myopic and hyperopic defocus conditions exhibited distinct bidirectional PChT alterations, showing average thickening (10.0 ± 5.3µm) and thinning (-9.1 ± 5.5µm), respectively. In contrast, induced AO defocus conditions did not demonstrate a significant change from baseline. PChT recovery to baseline occurred for all conditions. The unexposed fovea did not show any significant ChT change, indicating a localized ChT response to retinal blur. We discovered that the PChT response serves as a marker for detecting peripheral retinal myopic and hyperopic defocus blur, especially in the presence of peripheral aberrations. These findings highlight the significant role of peripheral oriented blur in cueing peripheral defocus sign detection.
Read full abstract