The explosion and deflagration-to-detonation transition (DDT) in epoxy propane (E.P.) vapor/air mixture clouds under weak ignition conditions has been studied in an experimental tube of diameter 199 mm and length 29.6 m. E.P. vapor clouds were formed by injecting liquid E.P. into the experimental tube and evaporating of the fine E.P. droplets. The dimension and the evaporating process of the E.P. droplet were measured and analyzed. The E.P. vapor/air mixture clouds were ignited by an electric spark with an ignition energy of 40 J. The characteristics and the stages of the DDT process in the E.P. vapor/air mixtures have been studied and analyzed. A self-sustained detonation wave formed, as was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in the E.P. vapor/air mixture. The influence of the E.P. vapor concentration on the DDT process has been studied. The minimum E.P. vapor concentration for the occurrence of the DDT in the E.P. vapor/air mixture has been evaluated and the variation of DDT distance with E.P. vapor concentration has been analyzed.