BackgroundCurrent assays that monitor thrombin generation in plasma rely on fluorogenic substrates to follow the kinetics of zymogen activation, which may be complicated by substrate cleavage from other proteases. In addition, these assays depend on activation following cleavage at the prothrombin R320 site and fail to report the cleavage at the alternative R271 site, leading to the shedding of the auxiliary Gla and kringle domains of prothrombin. ObjectivesTo develop a plasma assay that directly monitors prothrombin activation independent of fluorogenic substrate hydrolysis. MethodsCleavage at the R271 site of prothrombin is monitored through loss of Förster resonance energy transfer in plasma coagulated along the extrinsic or intrinsic pathway. ResultsThe availability of factor (F)V in plasma strongly influences the rate of prothrombin activation. The rate of thrombin formation is equally perturbed in FV or prothrombin-depleted plasma, implicating that the thrombin-catalyzed feedback reactions that amplify the coagulation response play an important role in generating sufficient amounts of FVa required for the assembly of prothrombinase. Congenital deficiencies in FVIII and FIX significantly slow down cleavage at R271 in plasma coagulated along the extrinsic and intrinsic pathways. Prothrombin activation in FXI-deficient plasma is only perturbed when coagulation is triggered along the intrinsic pathway. ConclusionThe Förster resonance energy transfer assay enables direct monitoring of prothrombin activation through cleavage at R271 without the need for fluorogenic substrates. The assay is sensitive enough to assess how deficiencies in coagulation factors affect thrombin formation.