Previously, we determined that elimination of deoxycytidylate (dCMP) deaminase (DCD1) in the yeast Saccharomyces cerevisiae increases the intracellular dCTP:dTTP ratio and reduces the induction of G x C --> A x T transitions in the SUP4-o gene by ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Simultaneously, the G x C --> C x G transversion frequency rises substantially. We attributed the first response to dCTP outcompeting dTTP for incorporation opposite O6-alkylguanine, and the second outcome to the increased dCTP pool causing error-prone repair of apurinic (AP) sites resulting from the removal or lability of N7-alkylguanine. To test the latter hypothesis, we used isogenic dcd1 strains deleted for either of two genes (MAG1: 3-methyladenine glycosylase; APN1: apurinic endonuclease) involved in the repair of N7-alkylguanine. In these backgrounds, EMS or MNNG induction of total SUP4-o mutations, G x C --> A x T transitions and G x C --> C x G transversions were reduced by >98%, >97%, and >80%, respectively. Mutation frequencies in the dcd1 apn1 strain were close to those for spontaneous mutagenesis in the wild-type parent. These findings argue that misincorporation of dCTP during repair of alkylation-induced AP sites is responsible for the increased G x C --> C x G transversion frequency in the dcd1 strain treated with EMS or MNNG. The data also demonstrate that defective repair of AP sites coupled with an elevated dCTP:dTTP ratio eliminates most EMS and MNNG mutagenesis. In addition, the results point to a role for AP sites in the production of some EMS- and MNNG-induced G x C --> A x T transitions as well as other substitutions in the dcd1 strain.