Small GTPase of the Rab family functions as molecular switch in vesicle trafficking, regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In our ongoing efforts to study the pathogenesis of Colletotrichum fructicola, the causal agent of anthracnose in edible-oil plant Camellia oleifera, we identified CfRab6 as the Rab GTPase and characterized its roles in C. fructicola. Consistent with our hypothesis, targeted gene deletion revealed that the ΔCfrab6 mutant displays defects in vesicle trafficking, including endocytosis and autophagy. These combined effects led to the impairments in growth, conidia, and pathogenicity. Moreover, we demonstrated the critical importance of the GDP/GTP motifs are crucial for the normal function of CfRab6. Additionally, our findings demonstrated that CfRic1 and CfRgp1 act as conserved GEFs for CfRab6, supported by their interactions with CfRab6 and the partial restoration of the active GTP-bound CfRab6, which alleviated phenotypic defects in the ΔCfric1 and ΔCfrgp1 mutants. In conclusion, our study sheds new light on the significance of CfRab6-mediated vesicle trafficking in the physiology and pathogenicity of C. fructicola, which might offer new potential targets for the management of anthracnose disease.
Read full abstract